
CG:YRF, Chapel Hill, NC, USA, June 16-20, 2012

Meshing log n Dimensions in Polynomial Time∗

Gary L. Miller † Donald R. Sheehy ‡ Ameya A. Velingker §

Abstract

We present a new algorithm that produces an approx-
imation of the 1-dimensional skeleton of a Delaunay
mesh (or its dual Voronoi diagram) for point sets in
any dimension with guaranteed optimal mesh size and
quality. Our comparison based algorithm runs in time
O(2O(d)(n log n + m)), where n is the input size, m is
the output point set size, and d is the ambient dimen-
sion. The constants only depend on the desired element
quality bounds.

1 Introduction

The meshing problem is closely linked with numerical
solutions to PDEs arising in scientific computing, par-
ticularly from finite element analysis (FEA) [1]. How-
ever, it would be a mistake to only equate the tool,
meshing, and the application, FEA. In particular, there
is no reason to limit general meshing techniques to two-
and three-dimensional problems. The same features
that make meshing useful in FEA also make it useful
for geometric and topological data analysis in higher
dimensions.

A mesh provides a basis for piecewise linear func-
tions on a geometric space. This is useful when ap-
proximating one or more functions on the space and
is particularly useful when the functions are relatively
smooth (Lipschitz functions, for example). The graded
meshes we discuss here have the added benefit that they
are adaptive to the local density. Thus, they can give
higher fidelity approximations in some areas and lower
fidelity in others, increasing space efficiency. In geomet-
ric and topological data analysis, a standard technique
is to consider distance-like functions induced by a set of
points in Rd. These functions are generally Lipschitz,
and there are often regions of varying density.

Another application of high dimensional meshing
is robotics, specifically motion planning in a high-
dimensional configuration space [4].

∗Partially supported by the National Science Foundation under
grant number CCF-1065106.
†Computer Science Department, Carnegie Mellon University

glmiller@cs.cmu.edu
‡INRIA, don.r.sheehy@gmail.com
§Computer Science Department, Carnegie Mellon University

avelingk@cs.cmu.edu

2 Past Work

Hudson, et. al. devised the Sparse Voronoi Re-
finement (SVR) algorithm [5] which produces a size-
optimal quality Voronoi diagram in output-sensitive
time Od(n log ∆ + m), where n is the number of input
points, m is the number of output points, and ∆ is the
spread, the ratio of the diameter of the input set to the
smallest pairwise distance between two disjoint features
of the input. The notation Od signifies the fact that
the constant is allowed to depend on the dimension d.
However, ∆ can be arbitrarily large for fixed n.

Subsequently, Miller, et. al. presented the NetMesh
algorithm [7] which runs in Od(n log n + m) time. It
manages to remove the dependence on spread by opti-
mizing point location and is the first algorithm that is
work-optimal in a comparison-based model.

One of the shortcomings of the NetMesh algorithm
lies in the constant that is hidden by the Od term. In
particular, the algorithm stores uninserted input points
in Delaunay balls, whose centers are corners of Voronoi
cells. Since a Voronoi cell can have up to 2O(d2) corners,
this yields a 2O(d2) dependence on d, which is unsuitable
for meshing in high dimensions. For this reason, any
algorithm which stores the full Voronoi simplices can
be expected to suffer from the 2O(d2) dependence.

Our newly proposed algorithm avoids storing the
corners of Voronoi cells and therefore circumvents the
2O(d2) dependence. By using a preprocessing step to
deal with point location, we expect to be able to cre-
ate a quality mesh in O(2O(d)(n log n + m)). In many
useful data-driven applications, one is concerned with a
set of n points in high-dimensional space which, by the
Johnson-Lindenstrauss Lemma [6], may be embedded
with low distortion into a smaller space of dimension
roughly d ≈ log n. Hence, in this case, our algorithm
would produce a mesh in output-sensitive polynomial
time. This would constitute a large improvement over
the time complexity of existing algorithms.

Another related notion that has been explored in the
past is the approximate Voronoi diagram [2], which is
comparable to Steiner point methods. However, we have
adopted a different approach here.

3 Proposed Algorithm

The basic structure of our proposed algorithm is as fol-
lows: First, one constructs a greedy permutation of

This is an abstract of a presentation given at CG:YRF 2012. It has been made public for the benefit of the community and should be considered a preprint rather
than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.



1st Computational Geometry Young Researchers Forum, 2012

the input points. The points are then inserted one at
a time, yielding an incremental construction of the
mesh. However, instead of maintaining the mesh di-
rectly, we approximately maintain its dual, the Voronoi
diagram. After each input point insertion, Steiner
points are added as part of a refinement procedure
to retain mesh quality. The refinement procedure in-
volves using a random sampling based LP method to
find Voronoi cells with bad aspect ratio. As points are
inserted into the mesh, a point location data struc-
ture containing uninserted points is updated. The use
of the greedy permutation cuts down on the number
of exposed input points we keep in the point location
data structure while retaining enough points to avoid
the need for backtracking within the algorithm.

3.1 Point Location

A major component of our algorithm is the new point
location method. We keep uninserted points in Voronoi
cells of the incremental mesh at each step. Suppose we
are given a set of input points P ⊂ Rd for which we
wish to compute the Delaunay mesh. We preprocess
the given input set by permuting the points of P to
produce the greedy permutation, which is the ordering
p1, p2, . . . , pn for which each pi is the farthest point in P
from its predecessors. We also require a predecessor
pairing φ that assigns each pi to its nearest neighbor
in Pi−1 = {p1, p2, . . . , pi−1}. A good approximation to
the greedy permutation along with the pairing φ can be
computed in 2O(d)n log n time using net trees [3].

We define the radius of a mesh point pi as

ri = d(pi, φ(pi)).

It can be shown that ri ≤ rj for i > j.
For any nonnegative real number s, let Q(s) denote

all points of radius at least s, i.e.,

Q(s) = {pi ∈ P : ri ≥ s}.

By the aforementioned property, for each s there exists
an i ∈ {1, 2, . . . , n} such that Q(s) = Pi. No two points
of Q(s) are closer than s from each other, and no point
of P \Q(s) is farther than s from a point of Q(s).

The data structure for storing uninserted points is
very simple. At any time in the algorithm, if s denotes
the smallest edge length in the mesh, then the points
of Q(εs) are stored in the point location data structure.
The rest of the uninserted input points are designated
as “hidden points.”

Each point in the data structure is associated with the
Voronoi cell of the mesh that it lies inside. Thus, every
time we add an input point p to the point location data
structure, we shoot a ray from φ(p) to p and carefully
keep track of crossings across Voronoi cells to find the
Voronoi cell of the mesh in which p is contained.

We can expect the following invariant: At any time,
no Voronoi cell stores more than a constant num-
ber of points. This can be shown using a packing ar-
gument, since the stored points inside a Voronoi spaced
are evenly-spaced. Thus, each insertion into the mesh
should touch at most a constant number of points.

3.2 Maintenance of Mesh

While running our algorithm, we maintain a mesh of
points. However, since we do not store the corners or
topology of Voronoi cells, we actually maintain a super-
set of the true Voronoi neighbors of each mesh vertex.
It is this design choice which allows us to get by with
a 2O(d) dependence on d. In particular, for any vertex
p in the mesh, q is stored as a “neighbor” of p if two
separate conditions are satisfied, namely density and
sparsity. These conditions guarantee that any stage,
we are storing 2O(d) vertices in the neighbor superset.

The aforementioned structure can be pruned in(
1
ε

)O(d)
time to an ε-approximate Delaunay graph, as

defined below:

Defnition 1 An ε-approximate Delauany graph con-
tains all edges that appear in the true Delauanay skele-
ton or could appear if the vertices are perturbed by some
a factor of ε times the local feature size.

4 Conclusion

We have proposed an outline for an algorithm to com-
pute an approximate Delauany mesh for point set in-
puts. It would be interesting to consider how to adapt
the algorithm to be able to mesh inputs that also con-
tain higher dimensional features.

References

[1] P. L. George and H. Borouchaki. Delaunay Triangulation
and Meshing: Application to Finite Elements. Hermes,
1998.

[2] S. Har-Peled. A replacement for Voronoi diagrams of
near linear size. Proc. 10th ACM-SIAM SODA, 1999.

[3] S. Har-Peled and M. Mendel. Fast construction of
nets in low dimensional metrics, and their applications.
SICOMP, 35(5):1148–1184, 2006.

[4] Y. Huang and K. Gupta. A Delauany triangulation based
node connection strategy for probabilistic roadmap plan-
ners. Proc. ICRA, 2004.

[5] B. Hudson, G. Miller, and T. Phillips. Sparse Voronoi re-
finement. Proceedings of the 15th International Meshing
Roundtable, pages 339–356, 2006.

[6] W. Johnson and J. Lindenstrauss. Extensions of Lip-
schitz maps into a Hilbert space. Contemp. Math.,
26:189–206, 1984.

[7] G. Miller, T. Phillips, and D. Sheehy. Beating the spread:
Time-optimal point meshing. SoCG, 2011.


